Suavização Exponencial Explicada. Cópia Copyright. O conteúdo do InventoryOps é protegido por direitos de autor e não está disponível para republicação. Quando as pessoas primeiro encontro o termo suavização exponencial podem pensar que soa como um inferno de um lote de suavização. Seja qual for a suavização. Eles então começam a imaginar um cálculo matemático complicado que provavelmente requer um grau em matemática para entender, e espero que haja uma função embutida do Excel disponível se eles precisam fazer isso. A realidade da suavização exponencial é muito menos dramática e muito menos traumática. A verdade é, suavização exponencial é um cálculo muito simples que realiza uma tarefa bastante simples. Ele só tem um nome complicado porque o que tecnicamente acontece como resultado deste cálculo simples é realmente um pouco complicado. Para entender a suavização exponencial, ajuda a começar com o conceito geral de alisamento e um par de outros métodos comuns usados para obter suavização. O que é suavização A suavização é um processo estatístico muito comum. De fato, nós encontramos regularmente dados alisados em várias formas em nossas vidas do dia-a-dia. Toda vez que você usar uma média para descrever algo, você está usando um número suavizado. Se você pensar sobre porque você usa uma média para descrever algo, você compreenderá rapidamente o conceito do alisamento. Por exemplo, nós apenas experimentamos o inverno mais quente no registro. Como somos capazes de quantificar este Bem, começamos com conjuntos de dados das temperaturas altas e baixas diárias para o período que chamamos de Inverno para cada ano na história registrada. Mas isso nos deixa com um monte de números que saltam um pouco (não é como todos os dias este inverno foi mais quente do que os dias correspondentes de todos os anos anteriores). Precisamos de um número que elimine tudo isso pulando em torno dos dados para que possamos mais facilmente comparar um inverno para o próximo. Removendo o salto em torno dos dados é chamado de suavização, e neste caso, podemos apenas usar uma média simples para realizar a suavização. Na previsão de demanda, usamos suavização para remover a variação aleatória (ruído) de nossa demanda histórica. Isso nos permite identificar melhor os padrões de demanda (principalmente tendência e sazonalidade) e os níveis de demanda que podem ser usados para estimar a demanda futura. O ruído na demanda é o mesmo conceito que o saltar diário dos dados da temperatura. Não é de surpreender que a forma mais comum de as pessoas removerem o ruído da história de demanda seja usar uma média simples ou mais especificamente uma média móvel. Uma média móvel apenas usa um número predefinido de períodos para calcular a média, e esses períodos se movem com o passar do tempo. Por exemplo, se eu estou usando uma média móvel de 4 meses, e hoje é 01 de maio, estou usando uma média de demanda que ocorreu em janeiro, fevereiro, março e abril. No dia 1º de junho, estarei usando a demanda de fevereiro, março, abril e maio. Média móvel ponderada. Ao usar uma média, estamos aplicando a mesma importância (peso) a cada valor no conjunto de dados. Na média móvel de 4 meses, cada mês representava 25 da média móvel. Ao usar o histórico de demanda para projetar a demanda futura (e especialmente a tendência futura), é lógico chegar à conclusão de que você gostaria que a história mais recente tivesse um impacto maior em sua previsão. Podemos adaptar nosso cálculo de média móvel para aplicar vários pesos a cada período para obter os resultados desejados. Nós expressamos esses pesos como porcentagens eo total de todos os pesos para todos os períodos deve somar 100. Portanto, se decidimos que queremos aplicar 35 como o peso para o período mais próximo em nossa média móvel ponderada de 4 meses, podemos Subtrair 35 de 100 para encontrar temos 65 restantes para dividir sobre os outros 3 períodos. Por exemplo, podemos terminar com uma ponderação de 15, 20, 30 e 35, respectivamente, para os 4 meses (15 20 30 35 100). Suavização exponencial. Se voltarmos ao conceito de aplicar um peso ao período mais recente (como 35 no exemplo anterior) e espalhar o peso restante (calculado subtraindo o peso do período mais recente de 35 de 100 para obter 65), temos Os blocos de construção básicos para o nosso cálculo de suavização exponencial. A entrada de controle do cálculo de suavização exponencial é conhecida como o fator de suavização (também chamado de constante de suavização). Representa essencialmente a ponderação aplicada aos períodos mais recentes de procura. Então, onde usamos 35 como ponderação para o período mais recente no cálculo da média móvel ponderada, também poderíamos escolher usar 35 como o fator de suavização em nosso cálculo de suavização exponencial para obter um efeito semelhante. A diferença com o cálculo de suavização exponencial é que, em vez de termos que calcular também quanto peso aplicar a cada período anterior, o fator de suavização é usado para fazer isso automaticamente. Então aqui vem a parte exponencial. Se usarmos 35 como o fator de alisamento, a ponderação dos períodos mais recentes exigirá 35. A ponderação dos próximos períodos mais recentes demanda (o período antes do mais recente) será 65 de 35 (65 vem de subtrair 35 de 100). Isso equivale a 22,75 ponderação para esse período, se você fizer a matemática. Os próximos períodos mais recentes demanda será de 65 de 65 de 35, o que equivale a 14,79. O período antes disso será ponderado como 65 de 65 de 65 de 35, o que equivale a 9,61, e assim por diante. E isso vai de volta através de todos os seus períodos anteriores todo o caminho de volta para o início do tempo (ou o ponto em que você começou a usar suavização exponencial para esse item específico). Você provavelmente está pensando que está olhando como um monte de matemática. Mas a beleza do cálculo de suavização exponencial é que, ao invés de ter que recalcular cada período anterior cada vez que você recebe uma nova demanda de períodos, basta usar a saída do cálculo de suavização exponencial do período anterior para representar todos os períodos anteriores. Você está confuso ainda Isso fará mais sentido quando olharmos para o cálculo real Normalmente nos referimos à saída do cálculo de suavização exponencial como a próxima previsão de período. Na realidade, a previsão final precisa de um pouco mais de trabalho, mas para os propósitos deste cálculo específico, nós nos referiremos a ele como a previsão. O cálculo de suavização exponencial é o seguinte: Os períodos mais recentes demandam multiplicado pelo fator de suavização. PLUS Previsão dos períodos mais recentes multiplicada por (um menos o factor de suavização). D os períodos mais recentes exigem S o fator de suavização representado em forma decimal (então 35 seria representado como 0,35). F os períodos mais recentes previstos (a saída do cálculo de suavização do período anterior). OR (assumindo um fator de suavização de 0,35) (D 0,35) (F 0,65) Não é muito mais simples do que isso. Como você pode ver, tudo o que precisamos para entradas de dados aqui são os períodos mais recentes de demanda e os períodos mais recentes previstos. Aplicamos o fator de suavização (ponderação) aos períodos mais recentes exigir da mesma forma que faria no cálculo da média móvel ponderada. Aplicamos então a ponderação restante (1 menos o factor de alisamento) aos períodos mais recentes previstos. Uma vez que a previsão de períodos mais recente foi criada com base na demanda de períodos anteriores e nos períodos anteriores, que se baseou na demanda do período anterior e na previsão para o período anterior, baseada na demanda do período anterior E a previsão para o período anterior, que se baseou no período anterior. Bem, você pode ver como todos os períodos anteriores demanda são representados no cálculo sem realmente voltar e recalcular qualquer coisa. E isso é o que levou a popularidade inicial de suavização exponencial. Não era porque fêz um trabalho melhor de suavização do que a média móvel ponderada, era porque era mais fácil de calcular em um programa de computador. E, porque você não precisa pensar sobre o que ponderar para dar períodos anteriores ou quantos períodos anteriores para usar, como você faria na média móvel ponderada. E, porque soava mais frio do que a média móvel ponderada. Na verdade, pode-se argumentar que a média móvel ponderada proporciona maior flexibilidade, uma vez que você tem mais controle sobre a ponderação dos períodos anteriores. A realidade é que qualquer um destes pode fornecer resultados respeitáveis, então por que não ir com soar mais fácil e mais fresco. Suavização exponencial no Excel Permite ver como isso seria realmente olhar em uma planilha com dados reais. Cópia Copyright. O conteúdo do InventoryOps é protegido por direitos de autor e não está disponível para republicação. Na Figura 1A, temos uma planilha Excel com 11 semanas de demanda, e uma previsão exponencial suavizada calculada a partir dessa demanda. Eu usei um fator de suavização de 25 (0,25 na célula C1). A célula ativa atual é Cell M4 que contém a previsão para semana 12. Você pode ver na barra de fórmula, a fórmula é (L3C1) (L4 (1-C1)). Portanto, as únicas entradas diretas a esse cálculo são a demanda de períodos anteriores (célula L3), os períodos prévios previstos (célula L4) e o fator de suavização (célula C1, mostrada como referência de célula absoluta C1). Quando começamos um cálculo de suavização exponencial, precisamos conectar manualmente o valor da 1ª previsão. Assim, na célula B4, em vez de uma fórmula, acabamos de digitar a demanda a partir do mesmo período que a previsão. Na Célula C4 temos o nosso primeiro cálculo exponencial de suavização (B3C1) (B4 (1-C1)). Podemos então copiar Célula C4 e colá-lo em Células D4 através de M4 para preencher o resto de nossas células de previsão. Agora você pode clicar duas vezes em qualquer célula de previsão para ver se é baseado na célula de previsão de períodos anteriores e na célula de demanda de períodos anteriores. Assim, cada subsequente cálculo de suavização exponencial herda a saída do cálculo de suavização exponencial anterior. É assim que cada demanda de períodos anteriores é representada no cálculo dos períodos mais recentes, mesmo que esse cálculo não faça referência direta a esses períodos anteriores. Se você quiser obter fantasia, você pode usar Excels trace antecedentes função. Para fazer isso, clique em Célula M4 e, em seguida, na barra de ferramentas da faixa de opções (Excel 2007 ou 2018), clique na guia Fórmulas e, em seguida, clique em Rastrear precedentes. Ele irá desenhar linhas de conector para o primeiro nível de precedentes, mas se você continuar clicando em Trace Precedents, desenhará linhas de conector para todos os períodos anteriores para mostrar os relacionamentos herdados. Agora vamos ver o que suavização exponencial fez por nós. A Figura 1B mostra um gráfico linear de nossa demanda e previsão. Você pode ver como a previsão exageradamente suavizada remove a maior parte do jaggedness (saltando ao redor) da demanda semanal, mas ainda consegue seguir o que parece ser uma tendência ascendente na demanda. Você também notará que a linha de previsão suavizada tende a ser menor do que a linha de demanda. Isso é conhecido como atraso de tendência e é um efeito colateral do processo de alisamento. Toda vez que você usar suavização quando uma tendência está presente sua previsão ficará atrás da tendência. Isto é verdade para qualquer técnica de suavização. De fato, se continuássemos esta planilha e começássemos a inserir números de demanda mais baixos (fazendo uma tendência descendente), veríamos a queda da linha de demanda ea linha de tendência se mover acima dela antes de começar a seguir a tendência descendente. É por isso que eu mencionei anteriormente a saída do cálculo exponencial suavização que chamamos de uma previsão, ainda precisa de algum trabalho mais. Há muito mais a previsão do que apenas alisar as colisões na demanda. Precisamos fazer ajustes adicionais para coisas como defasagem de tendência, sazonalidade, eventos conhecidos que podem afetar a demanda, etc. Mas tudo isso está além do escopo deste artigo. Provavelmente, você também corre em termos como suavização exponencial dupla e suavização tripla exponencial. Esses termos são um pouco enganador, uma vez que você não está re-suavização da demanda várias vezes (você poderia se você quiser, mas isso não é o ponto aqui). Estes termos representam o uso de suavização exponencial em elementos adicionais da previsão. Assim, com a suavização exponencial simples, você está suavizando a demanda básica, mas com a suavização exponencial dupla você está suavizando a demanda base mais a tendência e com a suavização exponencial tripla você está suavizando a demanda base mais a tendência mais a sazonalidade. A outra pergunta mais comumente questionada sobre a suavização exponencial é onde faço para obter o meu fator de suavização Não há nenhuma resposta mágica aqui, você precisa testar vários fatores de suavização com seus dados de demanda para ver o que você recebe os melhores resultados. Existem cálculos que podem definir automaticamente (e alterar) o fator de suavização. Estes se enquadram no termo alisamento adaptativo, mas você precisa ter cuidado com eles. Simplesmente não há uma resposta perfeita e você não deve aplicar cegamente qualquer cálculo sem testes minuciosos e desenvolver uma compreensão completa do que esse cálculo faz. Você também deve executar cenários de ocorrência para ver como esses cálculos reagem às mudanças de demanda que talvez não existam atualmente nos dados de demanda que você está usando para testes. O exemplo de dados que eu usei anteriormente é um bom exemplo de uma situação em que você realmente precisa testar alguns outros cenários. Esse exemplo de dados particulares mostra uma tendência ascendente um tanto consistente. Muitas grandes empresas com software de previsão muito caro entrou em grande problema no passado não tão distante quando suas configurações de software que foram ajustadas para uma economia em crescimento não reagiram bem quando a economia começou a estagnar ou encolher. Coisas como esta acontecem quando você não entende o que seus cálculos (software) está realmente fazendo. Se eles entendessem seu sistema de previsão, eles teriam sabido que precisavam pular e mudar algo quando havia mudanças súbitas e dramáticas em seus negócios. Então, você tem o básico de suavização exponencial explicado. Quer saber mais sobre o uso de suavização exponencial em uma previsão real, confira o meu livro Inventory Management Explained. Cópia Copyright. O conteúdo do InventoryOps é protegido por direitos de autor e não está disponível para republicação. Dave Piasecki. É owneroperator de Inventário Operations Consulting LLC. Uma empresa de consultoria que presta serviços relacionados à gestão de inventário, manuseio de materiais e operações de armazém. Possui mais de 25 anos de experiência em gestão de operações e pode ser alcançado através de seu website (inventoryops), onde mantém informações adicionais relevantes. O My BusinessExponential suaviza as observações passadas com pesos exponencialmente decrescentes para prever valores futuros. Este esquema de alisamento começa por definir (S2) a (y1), onde (Si) significa observação suavizada ou EWMA e (y) representa a observação original. Os índices referem-se aos períodos de tempo, (1,, 2,, ldots,, n). Para o terceiro período, (S3 alfa y2 (1-alfa) S2) e assim por diante. Não existe (S1) a série suavizada começa com a versão suavizada da segunda observação. Para qualquer período de tempo (t), o valor suavizado (St) é encontrado calculando St alpha y (1-alfa) S ,,,,,, 0 0 Equação expandida para (S5) Por exemplo, a equação expandida para o alisado (S5) é: S5 alfa esquerdo (1-alfa) 0 y (1-alfa) 1 y (1-alfa) 2 y direito (1-alfa) 3 S2. Ilustra comportamento exponencial Isso ilustra o comportamento exponencial. Os pesos, (alfa (alfa) t) diminuem geometricamente, e sua soma é a unidade como mostrado abaixo, usando uma propriedade de séries geométricas: alfa suma (1-alfa) i alfa esquerda frac direita 1 - (1-alfa) T. A partir da última fórmula podemos ver que o termo de soma mostra que a contribuição para o valor suavizado (St) torna-se menor em cada período de tempo consecutivo. Exemplo para (alfa 0,3) Let (alfa 0,3). Observe que os pesos (alfa (1-alfa) t) diminuem exponencialmente (geometricamente) com o tempo. A soma dos erros quadrados (SSE) 208.94. A média dos erros quadrados (MSE) é a SSE 11 19.0. Calcular para diferentes valores de (alfa) O MSE foi novamente calculado para (alfa 0,5) e acabou por ser 16,29, então neste caso nós preferimos um (alfa) de 0,5. Podemos fazer melhor Podemos aplicar o comprovado método de tentativa e erro. Este é um procedimento iterativo começando com um intervalo de (alfa) entre 0,1 e 0,9. Determinamos a melhor escolha inicial para (alfa) e depois procuramos entre (alfa - Delta) e (alfa Delta). Poderíamos repetir isso talvez mais uma vez para encontrar o melhor (alfa) a 3 casas decimais. Otimizadores não-lineares podem ser usados Mas há melhores métodos de busca, como o procedimento Marquardt. Este é um otimizador não-linear que minimiza a soma dos quadrados dos resíduos. Em geral, a maioria dos programas de software estatísticos bem concebidos deve ser capaz de encontrar o valor de (alfa) que minimiza o MSE. Modelos ARIMA (p, d, q): Os modelos ARIMA são, em teoria, a classe mais geral de modelos para a previsão de uma série de tempo que pode ser (Se necessário), talvez em conjunção com transformações não-lineares, como logging ou deflação (se necessário). Uma variável aleatória que é uma série de tempo é estacionária se suas propriedades estatísticas são todas constantes ao longo do tempo. Uma série estacionária não tem tendência, suas variações em torno de sua média têm uma amplitude constante, e ele se move de forma consistente. Isto é, os seus padrões de tempo aleatório a curto prazo têm sempre o mesmo aspecto num sentido estatístico. Esta última condição significa que suas autocorrelações (correlações com seus próprios desvios prévios em relação à média) permanecem constantes ao longo do tempo, ou de forma equivalente, que seu espectro de poder permanece constante ao longo do tempo. Uma variável aleatória desta forma pode ser vista (como de costume) como uma combinação de sinal e ruído, eo sinal (se for aparente) poderia ser um padrão de reversão média rápida ou lenta, ou oscilação sinusoidal, ou rápida alternância no sinal , E poderia também ter uma componente sazonal. Um modelo ARIMA pode ser visto como um 8220filter8221 que tenta separar o sinal do ruído, e o sinal é então extrapolado para o futuro para obter previsões. A equação de previsão de ARIMA para uma série de tempo estacionária é uma equação linear (isto é, tipo de regressão) na qual os preditores consistem em atrasos da variável dependente e / ou atrasos dos erros de previsão. Ou seja: Valor previsto de Y uma constante e / ou uma soma ponderada de um ou mais valores recentes de Y e / ou uma soma ponderada de um ou mais valores recentes dos erros. Se os preditores consistem apenas em valores defasados de Y., é um modelo autoregressivo puro (8220 auto-regressado8221), que é apenas um caso especial de um modelo de regressão e que poderia ser equipado com software de regressão padrão. Por exemplo, um modelo autoregressivo de primeira ordem (8220AR (1) 8221) para Y é um modelo de regressão simples no qual a variável independente é apenas Y retardada por um período (LAG (Y, 1) em Statgraphics ou YLAG1 em RegressIt). Se alguns dos preditores são defasagens dos erros, um modelo ARIMA não é um modelo de regressão linear, porque não há maneira de especificar o erro 8222 como uma variável independente: os erros devem ser calculados em base período a período Quando o modelo é ajustado aos dados. Do ponto de vista técnico, o problema com o uso de erros defasados como preditores é que as previsões do modelo não são funções lineares dos coeficientes. Mesmo que sejam funções lineares dos dados passados. Portanto, os coeficientes em modelos ARIMA que incluem erros retardados devem ser estimados por métodos de otimização não-lineares (8220hill-climbing8221) ao invés de apenas resolver um sistema de equações. O acrônimo ARIMA significa Auto-Regressive Integrated Moving Average. Lags das séries estacionalizadas na equação de previsão são chamados de termos quotautorregressivos, os atrasos dos erros de previsão são chamados de quotmoving termos médios e uma série de tempo que precisa ser diferenciada para ser estacionária é dito ser uma versão quotintegrada de uma série estacionária. Modelos de Random-walk e tendência aleatória, modelos autorregressivos e modelos de suavização exponencial são casos especiais de modelos ARIMA. Um modelo ARIMA não sazonal é classificado como um modelo quotARIMA (p, d, q) quot, onde: p é o número de termos autorregressivos, d é o número de diferenças não sazonais necessárias para a estacionaridade e q é o número de erros de previsão defasados em A equação de predição. A equação de previsão é construída como se segue. Em primeiro lugar, vamos dizer a d diferença de Y. o que significa: Note que a segunda diferença de Y (o caso d2) não é a diferença de 2 períodos atrás. Pelo contrário, é a primeira diferença de primeira diferença. Que é o análogo discreto de uma segunda derivada, isto é, a aceleração local da série em vez da sua tendência local. Em termos de y. A equação de previsão geral é: Aqui os parâmetros da média móvel (9528217s) são definidos de modo que seus sinais sejam negativos na equação, seguindo a convenção introduzida por Box e Jenkins. Alguns autores e software (incluindo a linguagem de programação R) definem-los para que eles tenham mais sinais em vez disso. Quando números reais são conectados à equação, não há ambigüidade, mas é importante saber qual convenção seu software usa quando está lendo a saída. Muitas vezes os parâmetros são indicados por AR (1), AR (2), 8230 e MA (1), MA (2), 8230, etc. Para identificar o modelo ARIMA apropriado para Y. você começa por determinar a ordem de diferenciação (D) a necessidade de estacionarizar a série e remover as características brutas da sazonalidade, talvez em conjunto com uma transformação estabilizadora de variância, tal como o desmatamento ou a deflação. Se você parar neste ponto e prever que a série diferenciada é constante, você tem apenas montado uma caminhada aleatória ou modelo de tendência aleatória. No entanto, a série estacionária pode ainda ter erros autocorrelacionados, sugerindo que algum número de termos AR (p 8805 1) e / ou alguns termos MA (q 8805 1) também são necessários na equação de previsão. O processo de determinar os valores de p, d e q que são melhores para uma dada série temporal será discutido em seções posteriores das notas (cujos links estão no topo desta página), mas uma prévia de alguns dos tipos De modelos não-sazonais ARIMA que são comumente encontrados é dada abaixo. ARIMA (1,0,0) modelo autoregressivo de primeira ordem: se a série é estacionária e autocorrelacionada, talvez possa ser predita como um múltiplo de seu próprio valor anterior, mais uma constante. A equação de previsão neste caso é 8230, que é regressão Y sobre si mesma retardada por um período. Este é um modelo 8220ARIMA (1,0,0) constant8221. Se a média de Y for zero, então o termo constante não seria incluído. Se o coeficiente de inclinação 981 1 for positivo e menor que 1 em magnitude (ele deve ser menor que 1 em magnitude se Y estiver parado), o modelo descreve o comportamento de reversão de média no qual o valor do próximo período deve ser 981 vezes 1 Longe da média como valor deste período. Se 981 1 for negativo, ele prevê o comportamento de reversão de média com alternância de sinais, isto é, também prevê que Y estará abaixo do próximo período médio se estiver acima da média neste período. Em um modelo autorregressivo de segunda ordem (ARIMA (2,0,0)), haveria um termo Y t-2 à direita também, e assim por diante. Dependendo dos sinais e magnitudes dos coeficientes, um modelo ARIMA (2,0,0) poderia descrever um sistema cuja reversão média ocorre de forma sinusoidal oscilante, como o movimento de uma massa sobre uma mola submetida a choques aleatórios . Se a série Y não for estacionária, o modelo mais simples possível para ela é um modelo randômico randômico, que pode ser considerado como um caso limitante de um modelo AR (1) em que o modelo autorregressivo Coeficiente é igual a 1, ou seja, uma série com reversão média infinitamente lenta. A equação de predição para este modelo pode ser escrita como: onde o termo constante é a variação média período-período (ou seja, a deriva a longo prazo) em Y. Este modelo poderia ser montado como um modelo de regressão sem interceptação em que o A primeira diferença de Y é a variável dependente. Uma vez que inclui (apenas) uma diferença não sazonal e um termo constante, é classificada como um modelo de ARIMA (0,1,0) com constante. quot O modelo randômico-sem-desvio seria um ARIMA (0,1, 0) sem constante ARIMA (1,1,0) modelo autoregressivo de primeira ordem diferenciado: Se os erros de um modelo de caminhada aleatória são autocorrelacionados, talvez o problema possa ser corrigido adicionando um lag da variável dependente à equação de predição - Eu Pela regressão da primeira diferença de Y sobre si mesma retardada por um período. Isto resultaria na seguinte equação de predição: que pode ser rearranjada para Este é um modelo autorregressivo de primeira ordem com uma ordem de diferenciação não sazonal e um termo constante - isto é. Um modelo ARIMA (1,1,0). ARIMA (0,1,1) sem suavização exponencial simples constante: Uma outra estratégia para corrigir erros autocorrelacionados em um modelo de caminhada aleatória é sugerida pelo modelo de suavização exponencial simples. Lembre-se que para algumas séries temporais não-estacionárias (por exemplo, as que exibem flutuações barulhentas em torno de uma média de variação lenta), o modelo de caminhada aleatória não funciona tão bem quanto uma média móvel de valores passados. Em outras palavras, ao invés de tomar a observação mais recente como a previsão da próxima observação, é melhor usar uma média das últimas observações para filtrar o ruído e estimar com mais precisão a média local. O modelo de suavização exponencial simples usa uma média móvel exponencialmente ponderada de valores passados para conseguir esse efeito. A equação de predição para o modelo de suavização exponencial simples pode ser escrita em um número de formas matematicamente equivalentes. Uma das quais é a chamada 8220error correction8221, na qual a previsão anterior é ajustada na direção do erro que ela fez: Como e t-1 Y t-1 - 374 t-1 por definição, isso pode ser reescrito como : Que é uma equação de previsão ARIMA (0,1,1) sem constante com 952 1 1 - 945. Isso significa que você pode ajustar uma suavização exponencial simples especificando-a como um modelo ARIMA (0,1,1) sem Constante, eo coeficiente MA (1) estimado corresponde a 1-menos-alfa na fórmula SES. Lembre-se que no modelo SES, a idade média dos dados nas previsões de 1 período antecipado é de 1 945, o que significa que tendem a ficar aquém das tendências ou pontos de viragem em cerca de 1 945 períodos. Segue-se que a média de idade dos dados nas previsões de 1 período de um modelo ARIMA (0,1,1) sem constante é de 1 (1 - 952 1). Assim, por exemplo, se 952 1 0,8, a idade média é 5. Quando 952 1 aproxima-se de 1, o modelo ARIMA (0,1,1) sem constante torna-se uma média móvel de muito longo prazo e como 952 1 Aproxima-se 0 torna-se um modelo randômico-caminhada-sem-deriva. Nos dois modelos anteriores discutidos acima, o problema dos erros autocorrelacionados em um modelo de caminhada aleatória foi fixado de duas maneiras diferentes: adicionando um valor defasado da série diferenciada Para a equação ou adicionando um valor defasado do erro de previsão. Qual abordagem é a melhor Uma regra para esta situação, que será discutida em mais detalhes mais adiante, é que a autocorrelação positiva é geralmente melhor tratada pela adição de um termo AR para o modelo e autocorrelação negativa é geralmente melhor tratada pela adição de um MA termo. Nas séries econômicas e de negócios, a autocorrelação negativa muitas vezes surge como um artefato de diferenciação. Portanto, o modelo ARIMA (0,1,1), no qual a diferenciação é acompanhada por um termo de MA, é mais freqüentemente usado do que um modelo de auto-correlação positiva. Modelo ARIMA (1,1,0). ARIMA (0,1,1) com suavização exponencial simples constante com crescimento: Ao implementar o modelo SES como um modelo ARIMA, você realmente ganha alguma flexibilidade. Em primeiro lugar, o coeficiente MA (1) estimado pode ser negativo. Isto corresponde a um factor de suavização maior do que 1 num modelo SES, o que normalmente não é permitido pelo procedimento de ajustamento do modelo SES. Em segundo lugar, você tem a opção de incluir um termo constante no modelo ARIMA se desejar, para estimar uma tendência média não-zero. O modelo ARIMA (0,1,1) com constante tem a equação de predição: As previsões de um período de adiantamento deste modelo são qualitativamente semelhantes às do modelo SES, exceto que a trajetória das previsões de longo prazo é tipicamente uma Inclinada (cuja inclinação é igual a mu) em vez de uma linha horizontal. ARIMA (0,2,1) ou (0,2,2) sem suavização exponencial linear constante: Os modelos lineares de suavização exponencial são modelos ARIMA que utilizam duas diferenças não sazonais em conjunto com os termos MA. A segunda diferença de uma série Y não é simplesmente a diferença entre Y e ela mesma retardada por dois períodos, mas sim é a primeira diferença da primeira diferença - i. e. A mudança na mudança de Y no período t. Assim, a segunda diferença de Y no período t é igual a (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Uma segunda diferença de uma função discreta é análoga a uma segunda derivada de uma função contínua: ela mede a quotaccelerationquot ou quotcurvaturequot na função em um dado ponto no tempo. O modelo ARIMA (0,2,2) sem constante prevê que a segunda diferença da série é igual a uma função linear dos dois últimos erros de previsão: que pode ser rearranjada como: onde 952 1 e 952 2 são MA (1) e MA (2) coeficientes. Este é um modelo de suavização exponencial linear geral. Essencialmente o mesmo que Holt8217s modelo, e Brown8217s modelo é um caso especial. Ele usa médias móveis exponencialmente ponderadas para estimar um nível local e uma tendência local na série. As previsões a longo prazo deste modelo convergem para uma linha recta cujo declive depende da tendência média observada no final da série. ARIMA (1,1,2) sem suavização exponencial linear de tendência amortecida constante. Este modelo é ilustrado nos slides acompanhantes nos modelos ARIMA. Ele extrapola a tendência local no final da série, mas aplana-lo em horizontes de previsão mais longos para introduzir uma nota de conservadorismo, uma prática que tem apoio empírico. Veja o artigo sobre "Por que a tendência de amortecimento" trabalha por Gardner e McKenzie e o artigo de "Rule of Gold" de Armstrong et al. para detalhes. É geralmente aconselhável aderir a modelos nos quais pelo menos um de p e q não é maior do que 1, ou seja, não tente encaixar um modelo como ARIMA (2,1,2), uma vez que isto é susceptível de conduzir a sobre-adaptação E quotcommon-factorquot questões que são discutidas em mais detalhes nas notas sobre a estrutura matemática dos modelos ARIMA. Implementação de planilhas: modelos ARIMA como os descritos acima são fáceis de implementar em uma planilha. A equação de predição é simplesmente uma equação linear que se refere a valores passados de séries temporais originais e valores passados dos erros. Assim, você pode configurar uma planilha de previsão ARIMA armazenando os dados na coluna A, a fórmula de previsão na coluna B e os erros (dados menos previsões) na coluna C. A fórmula de previsão em uma célula típica na coluna B seria simplesmente Uma expressão linear que se refere a valores nas linhas precedentes das colunas A e C, multiplicada pelos coeficientes AR ou MA apropriados armazenados em células noutro local da folha de cálculo.
No comments:
Post a Comment